Artificial intelligence aids materials fabrication

In recent years, research efforts such as the Materials Genome Initiative and the Materials Project have produced a wealth of computational tools for designing new materials useful for a range of applications, from energy and electronics to aeronautics and civil engineering.

But developing processes for producing those materials has continued to depend on a combination of experience, intuition, and manual literature reviews.

A team of researchers at MIT, the University of Massachusetts at Amherst, and the University of California at Berkeley hope to close that materials-science automation gap, with a new artificial-intelligence system that would pore through research papers to deduce “recipes” for producing particular materials.

“Computational materials scientists have made a lot of progress in the ‘what’ to make — what material to design based on desired properties,” says Elsa Olivetti, the Atlantic Richfield Assistant Professor of Energy Studies in MIT’s Department of Materials Science and Engineering (DMSE). “But because of that success, the bottleneck has shifted to, ‘Okay, now how do I make it?’”

The researchers envision a database that contains materials recipes extracted from millions of papers. Scientists and engineers could enter the name of a target material and any other criteria — precursor materials, reaction conditions, fabrication processes — and pull up suggested recipes.

As a step toward realizing that vision, Olivetti and her colleagues have developed a machine-learning system that can analyze a research paper, deduce which of its paragraphs contain materials recipes, and classify the words in those paragraphs according to their roles within the recipes: names of target materials, numeric quantities, names of pieces of equipment, operating conditions, descriptive adjectives, and the like.

In a paper appearing in the latest issue of the journal Chemistry of Materials, they also demonstrate that a machine-learning system can analyze the extracted data to infer general characteristics of classes of materials — such as the different temperature ranges that their synthesis requires — or particular characteristics of individual materials — such as the different physical forms they will take when their fabrication conditions vary.

Olivetti is the senior author on the paper, and she’s joined by Edward Kim, an MIT graduate student in DMSE; Kevin Huang, a DMSE postdoc; Adam Saunders and Andrew McCallum, computer scientists at UMass Amherst; and Gerbrand Ceder, a Chancellor’s Professor in the Department of Materials Science and Engineering at Berkeley.

Filling in the gaps

The researchers trained their system using a combination of supervised and unsupervised machine-learning techniques. “Supervised” means that the training data fed to the system is first annotated by humans; the system tries to find correlations between the raw data and the annotations. “Unsupervised” means that the training data is unannotated, and the system instead learns to cluster data together according to structural similarities.

Because materials-recipe extraction is a new area of research, Olivetti and her colleagues didn’t have the luxury of large, annotated data sets accumulated over years by diverse teams of researchers. Instead, they had to annotate their data themselves — ultimately, about 100 papers.

By machine-learning standards, that’s a pretty small data set. To improve it, they used an algorithm developed at Google called Word2vec. Word2vec looks at the contexts in which words occur — the words’ syntactic roles within sentences and the other words around them — and groups together words that tend to have similar contexts. So, for instance, if one paper contained the sentence “We heated the titanium tetracholoride to 500 C,” and another contained the sentence “The sodium hydroxide was heated to 500 C,” Word2vec would group “titanium tetracholoride” and “sodium hydroxide” together.

With Word2vec, the researchers were able to greatly expand their training set, since the machine-learning system could infer that a label attached to any given word was likely to apply to other words clustered with it. Instead of 100 papers, the researchers could thus train their system on around 640,000 papers.

Tip of the iceberg

To test the system’s accuracy, however, they had to rely on the labeled data, since they had no criterion for evaluating its performance on the unlabeled data. In those tests, the system was able to identify with 99 percent accuracy the paragraphs that contained recipes and to label with 86 percent accuracy the words within those paragraphs.

The researchers hope that further work will improve the system’s accuracy, and in ongoing work they are exploring a battery of deep learning techniques that can make further generalizations about the structure of materials recipes, with the goal of automatically devising recipes for materials not considered in the existing literature.

Much of Olivetti’s prior research has concentrated on finding more cost-effective and environmentally responsible ways to produce useful materials, and she hopes that a database of materials recipes could abet that project.

“This is landmark work," says Ram Seshadri, the Fred and Linda R. Wudl Professor of Materials Science at the University of California at Santa Barbara. “The authors have taken on the difficult and ambitious challenge of capturing, through AI methods, strategies employed for the preparation of new materials. The work demonstrates the power of machine learning, but it would be accurate to say that the eventual judge of success or failure would require convincing practitioners that the utility of such methods can enable them to abandon their more instinctual approaches.


Source: MIT

PRIVACY

提示条款
iconfont平台提醒您:在使用iconfont平台各项服务前,请您务必仔细阅读并透彻理解本声明。如对本声明内容有任何疑问,您可通过网站下方公布的联系方式联系iconfont进行咨询。如果您不同意本声明或其中任何内容,您应立即停止使用iconfont平台服务。如果您使用iconfont平台服务的,您的使用行为将被视为对本声明全部内容的认可。
定义
iconfont平台:是一个矢量技术交流学习分享的平台,同时为广大用户提供矢量图标存储、字体图标转换等功能的平台(域名为iconfont.cn)。
iconfont:是iconfont平台运营方“淘宝(中国)软件有限公司”的简称。
权利归属
除非iconfont另行声明,除用户自行上传的内容外,iconfont平台内的所有产品、技术、软件、程序、数据及其他信息(包括但不限于文字、图像、图片、照片、音频、视频、图表、色彩、版面设计、电子文档)的所有权利(包括但不限于版权、商标权、专利权、商业秘密及其他所有相关权利)均归iconfont或其关联公司所有。未经iconfont许可,任何人不得擅自使用(包括但不限于通过任何机器人、蜘蛛等程序或设备监视、复制、传播、展示、镜像、上传、下载iconfont平台内的任何内容)。 iconfont平台的Logo、“iconfont.cn”等文字、图形及其组合,以及iconfont平台的其他标识、徵记、产品和服务名称均为iconfont及其关联公司在中国和其它国家的商标,未经iconfont书面授权,任何人不得以任何方式展示、使用或作其他处理,也不得向他人表明您有权展除非iconfont另行声明,除用户自行上传的内容外,iconfont平台内的所有产品、技术、软件、程序、数据及其他信息(包括但不限于文字、图像、图片、照片、音频、视频、图表、色彩、版面设计、电子文档)的所有权利(包括但不限于版权、商标权、专利权、商业秘密及其他所有相关权利)均归iconfont或其关联公司所有。未经iconfont许可,任何人不得擅自使用(包括但不限于通过任何机器人、蜘蛛等程序或设备监视、复制、传播、展示、镜像、上传、下载iconfont平台内的任何内容)。
iconfont平台的Logo、“iconfont.cn”等文字、图形及其组合,以及iconfont平台的其他标识、徵记、产品和服务名称均为iconfont及其关联公司在中国和其它国家的商标,未经iconfont书面授权,任何人不得以任何方式展示、使用或作其他处理,也不得向他人表明您有权展... 除非iconfont另行声明,除用户自行上传的内容外,iconfont平台内的所有产品、技术、软件、程序、数据及其他信息(包括但不限于文字、图像、图片、照片、音频、视频、图表、色彩、版面设计、电子文档)的所有权利(包括但不限于版权、商标权、专利权、商业秘密及其他所有相关权利)均归iconfont或其关联公司所有。未经iconfont许可,任何人不得擅自使用(包括但不限于通过任何机器人、蜘蛛等程序或设备监视、复制、传播、展示、镜像、上传、下载iconfont平台内的任何内容)。 iconfont平台的Logo、“iconfont.cn”等文字、图形及其组合,以及iconfont平台的其他标识、徵记、产品和服务名称均为iconfont及其关联公司在中国和其它国家的商标,未经iconfont书面授权,任何人不得以任何方式展示、使用或作其他处理,也不得向他人表明您有权展除非iconfont另行声明,除用户自行上传的内容外,iconfont平台内的所有产品、技术、软件、程序、数据及其他信息(包括但不限于文字、图像、图片、照片、音频、视频、图表、色彩、版面设计、电子文档)的所有权利(包括但不限于版权、商标权、专利权、商业秘密及其他所有相关权利)均归iconfont或其关联公司所有。未经iconfont许可,任何人不得擅自使用(包括但不限于通过任何机器人、蜘蛛等程序或设备监视、复制、传播、展示、镜像、上传、下载iconfont平台内的任何内容)。
iconfont平台的Logo、“iconfont.cn”等文字、图形及其组合,以及iconfont平台的其他标识、徵记、产品和服务名称均为iconfont及其关联公司在中国和其它国家的商标,未经iconfont书面授权,任何人不得以任何方式展示、使用或作其他处理,也不得向他人表明您有权展... 除非iconfont另行声明,除用户自行上传的内容外,iconfont平台内的所有产品、技术、软件、程序、数据及其他信息(包括但不限于文字、图像、图片、照片、音频、视频、图表、色彩、版面设计、电子文档)的所有权利(包括但不限于版权、商标权、专利权、商业秘密及其他所有相关权利)均归iconfont或其关联公司所有。未经iconfont许可,任何人不得擅自使用(包括但不限于通过任何机器人、蜘蛛等程序或设备监视、复制、传播、展示、镜像、上传、下载iconfont平台内的任何内容)。 iconfont平台的Logo、“iconfont.cn”等文字、图形及其组合,以及iconfont平台的其他标识、徵记、产品和服务名称均为iconfont及其关联公司在中国和其它国家的商标,未经iconfont书面授权,任何人不得以任何方式展示、使用或作其他处理,也不得向他人表明您有权展除非iconfont另行声明,除用户自行上传的内容外,iconfont平台内的所有产品、技术、软件、程序、数据及其他信息(包括但不限于文字、图像、图片、照片、音频、视频、图表、色彩、版面设计、电子文档)的所有权利(包括但不限于版权、商标权、专利权、商业秘密及其他所有相关权利)均归iconfont或其关联公司所有。未经iconfont许可,任何人不得擅自使用(包括但不限于通过任何机器人、蜘蛛等程序或设备监视、复制、传播、展示、镜像、上传、下载iconfont平台内的任何内容)。
iconfont平台的Logo、“iconfont.cn”等文字、图形及其组合,以及iconfont平台的其他标识、徵记、产品和服务名称均为iconfont及其关联公司在中国和其它国家的商标,未经iconfont书面授权,任何人不得以任何方式展示、使用或作其他处理,也不得向他人表明您有权展...